

VERARBEITUNGSRICHTLINIE Sika Lösungen für baulichen Brandschutz

02.2025 / SIKA SCHWEIZ AG / JMS

INHALTSVERZEICHNIS

1	Vorwort	3
2	Sika Lösungen für baulichen Brandschutz	3
3	Brandverhalten und Feuerwiderstand	3
4	Lineare Fugenabdichtungen	5
5	Leichte und massive Wände	6
6	EN 13501-2	7
6.1	Klassifizierung von linienförmigen Fugenabdichtungen	7
7	Produkte für lineare Fugenabdichtung	8
7.1	Sikacryl®-620 Fire	9
7.1.1	VKF Anerkennung Nr. 26734 und Nr. 31802	9
7.1.2	ETA-20/1115 Zulassung	10
7.2	Sikasil®-670 Fire	11
7.2.1	VKF Anerkennung Nr. 26735	11
7.2.2	ETA-20/1114 Zulassung	12
7.3	Sika Boom®-400 Fire	14
7.3.1	VKF Anerkennung Nr. 26793 und Nr. 26796	14
7.4	Sika® Backer Rod Fire	15
7.4.1	Wahl des Sika® Backer Rod Fire Durchmessers	15
7.4.2	VKF Anerkennung Nr. 32859	15
7.4.3	ETA-23/0088 Zulassung	17
8	Sika Brandschutzetikette	18
9	Rechtliche Hinweise	19

1 VORWORT

Die Prüfungen und Klassifizierung des Feuerwiderstands eines Materials oder Systems sind stark regulierte Prozesse, die bestimmten Regeln und Normen folgen müssen. Dies hat zur Folge, dass die daraus resultierenden Dokumente nach EN 13501-2 und/oder EAD/ETA oft sehr lang und kompliziert zu lesen und zu verstehen sind – selbst für Personen, die sich mit dem Thema baulicher Brandschutz regelmässig auseinandersetzen.

Zur Unterstützung und als Service für die Brandschutzplaner und Verarbeiter wurde diese Verarbeitungsrichtlinie erstellt. Es dient als Werkzeug, um das Verständnis für unsere Kunden im Umgang mit und der Anwendung unserer Produkte einfacher zu gestalten.

In diesem Verarbeitungsrichtlinie sind die offiziellen Resultate aus den Klassifizierungsberichten in eine einfacher zu lesende und zu verstehende Form gebracht. Dabei wurden alle allgemein gültigen Regeln wie auch die Anwendungsbeschränkungen berücksichtigt. Eine wichtige Rolle spielen die Grafiken der einzelnen Anwendungen. Diese Grafiken verweisen immer nur auf eine konkrete, mögliche Applikation – wenn z. B. ein Bild Abschottungen in Gipskartonwänden zeigt, ist sie auch für Betonwände gültig. Auch zeigen bestimmte Grafiken nicht alle Details wie Isoliermaterial in den Wänden.

Diese Verarbeitungsrichtlinie dient als einfach zu lesendes Zusatzdokument, nicht aber als vollständiger Ersatz für die Prüf- und Klassifizierungsberichte (z. B. ETA-Zulassungen und VKF-Anerkennungen), welche die einzig rechtlich verbindlichen Dokumente für die Schweiz darstellen. Bei etwaigen Abweichungen zwischen der vorliegenden Verarbeitungsrichtlinie und den offiziellen Berichten sind immer die Daten in Letzteren gültig.

2 SIKA LÖSUNGEN FÜR BAULICHEN BRANDSCHUTZ

Feuer fasziniert die Menschen bereits seit Jahrtausenden und viele Errungenschaften in der Menschheitsgeschichte waren nur durch seine Hilfe möglich. Kontrolliertes Feuer ist seit jeher ein Garant für Erfolg und Reichtum, es kann aber auch Schaden anrichten, wenn es ausser Kontrolle gerät – und Errungenschaften aus vielen Jahrhunderten innerhalb weniger Minuten zerstören.

Sika bietet umfassende Lösungen für brandbeständige Bauelemente, z. B. in kommerziellen und öffentlichen Gebäuden, in Wohnhäusern und Stahlbauten. Brandbeständige Abdichtungen, Spachtelmassen und Hinterfüllmaterialien für Fugen sowie Lösungen für Durchführungen und Brandschotte ermöglichen sicherere Gebäude und Infrastruktur.

Die Produkte entsprechen den aktuellsten relevanten Normen und erfüllen die höchsten Brandschutzanforderungen.

3 BRANDVERHALTEN UND FEUERWIDERSTAND

Dieses Kapitel stellt eine technische Einführung zum Thema baulicher Brandschutz dar, in der die wichtigsten Begriffe und Definitionen erklärt werden. Es soll auch als hilfreiches Werkzeug zum besseren Verständnis der relevanten Prüf- und Klassifizierungsnormen wie EN 1366-3, EN 1366-4 oder EN 13501-2 dienen. Die Anwendung dieser Regeln an die geprüften Testausrichtungen deckt die meisten möglichen Einbausituationen im Bauwerk ab, ohne Kompromisse in der Sicherheit eingehen zu müssen.

Brandschutzprüfungen können ein sehr komplexes Thema sein – der Unterschied zwischen «Brandverhalten» und «Feuerwiderstand» führt regelmässig zu Verwirrung, kann aber wie folgt unterschieden werden:

Das **Brandverhalten** beschreibt wie stark das Material zur Entwicklung und Ausbreitung eines Brandes beiträgt. Das Brandverhalten wird typischerweise für ein Material oder ein Produkt wie eine Wandbeschichtung oder einen Fugendichtstoff bestimmt, und nicht für ein Gebäudeelement oder einen Abschnitt wie eine Wand mit einer Fuge und einer Durchführungsabdichtung.

In Europa ist das Brandverhalten eines Materials in der europäischen Norm EN 13501-1 (siehe Tabelle) klassifiziert, welche in bestimmten Bereichen ältere Normen wie die DIN 4102 ersetzt.

Euroklasse	Anforderung	Beispielmaterialien
A1	Nicht brennbar, kein Beitrag zum Brand	Stein, Beton, Glas, die meisten Metalle, Steinwolle
A2	Nicht brennbar, sehr begrenzter Beitrag zum Brand	Wie A1, beinhaltet kleine Mengen organischen Materials
В	Schwer entflammbar, sehr begrenzter Beitrag zum Brand	Gipskartonplatten mit dünner Oberflächenbeschichtung, flammbeständige Dichtungen
С	Schwer entflammbar, begrenzter Beitrag zum Brand	Gipskartonplatten mit dicker Oberflächenbeschichtung
D	Normal entflammbar, hinnehmbarer Beitrag zum Brand	Holz und Holzprodukte
Е	Normal entflammbar, hinnehmbares Brandverhalten	Kunststoffe und Kunststoffprodukte
F	Leicht entflammbar, erfüllt nicht die Anforderungen der Klassen A1 - E	Andere Materialen

Der **Feuerwiderstand** beschreibt die Eignung eines Gebäudeelements, das Übergreifen von Hitze und/oder Flammen von einer Seite des Elements zur anderen zu verhindern und dabei seine Funktion zu behalten. Es handelt sich typischerweise um Wände oder Decken mit Fugen oder Öffnungen sowie Fenster und Türen. Dies bedeutet, dass nicht nur ein bestimmtes Material oder Produkt, sondern ein ganzes Gebäudeelement oder ein ganzer Gebäudeabschnitt geprüft werden muss.

Es gibt eine Vielzahl von nationalen und internationalen Prüf- und Klassifizierungsnormen für den Feuerwiderstand. Die meisten davon beruhen auf demselben Prinzip: Das Gebäudeelement oder die -komponente wird in Naturmassen zur Prüfung inklusive aller Öffnungen, Fugen, Fenster oder Türen in einem Rahmen fixiert. Der Rahmen wird dann in einen Prüfofen montiert. Die Seite, die in die Ofenkammer gerichtet ist, wird als feuerzugewandte Seite bezeichnet, während die andere, zur Umgebung gerichtete Seite, als feuerabgewandte Seite bezeichnet wird. Die Temperatur im Ofen wird nach einer definierten Aufheizkurve (Einheitstemperaturzeitkurve) auf 945 °C nach 60 Minuten bzw. 1.153 °C nach 240 Minuten gesteigert.

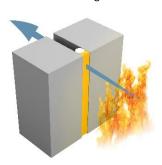
Drei Parameter sind dabei für die allermeisten Prüfungen zum Feuerwiderstand relevant:

- Tragfähigkeit (R)
- Raumabschluss (E)
- Wärmedämmung (I)

R - Tragfähigkeit

Die Tragfähigkeit (R) ist die Fähigkeit des Bauteils unter festgelegten mechanischen Einwirkungen einer Brandbeanspruchung auf einer oder mehreren Seite(n) ohne Verlust der Tragsicherheit für eine Dauer zu widerstehen.

Für die in dieser Broschüre gezeigten Produkte ist die Tragfähigkeit nicht relevant.

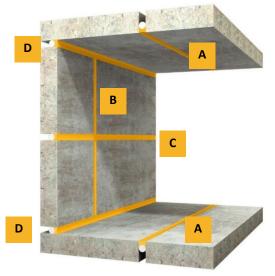

E - Raumabschluss

Raumabschluss (E) ist die Eignung eines Gebäudeelements, das Überschlagen von Flammen und heissen Gasen von der ausgesetzten Seite auf die dem Brand nicht ausgesetzte Seite zu verhindern.

I – Wärmedämmung

Wärmedämmung (I) ist die Eignung eines Gebäudeelements, die isolierenden Eigenschaften während eines Brandes für eine bestimmte Zeit zu erhalten. Die meisten Normen erlauben einen maximalen Temperaturanstieg um 180 °C auf der feuerabgewandten Seite.

Standard	Beschreibung, Umfang	Bemerkung	
EN 1366-3	Feuerwiderstandsprüfungen für Installationen Teil 3 – Abschottungen	Relevanteste Prüfnorm für Feuerwiderstandsprüfungen	
EN 1366-4	Teil 4 – Abdichtungssysteme für Bauteilfugen	_	
EN 13501-2	Klassifizierung mit den Ergebnissen aus den Feuerwiderstandsprüfungen	Führt zu EI Klassifizierungen, relevant für EN 1366 und EAD	
EAD 350454-00-1104	Brandschutzprodukte zum Abdichten und Verschliessen von Fugen und Öffnungen und zum Aufhalten von Feuer im Brandfall – Abschottungen	Ersetzt die ETAG 026 Führt zu CE-Kennzeichnung und Leistungserklärung der Produkte	
EAD 350141-00-1106	Brandschutzprodukte zum Abdichten und Verschliessen von Fugen und Öffnungen und zum Aufhalten von Feuer im Brandfall – Linienförmige Fugenabdichtungen	Feuerwiderstandsprüfung nach EN 1366	


4 LINEARE FUGENABDICHTUNGEN

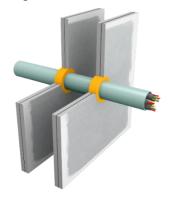
Die EN 1366-4 definiert, in welcher Anwendung eine lineare Fuge in der Praxis je nach geprüfter Ausrichtung verbaut werden darf. Die folgende Tabelle zeigt eine vereinfachte Version dieser Definition. In der praktischen Ausführung bedeutet dies, dass vertikale Fugen in Wänden (B) und horizontale Fugen in Wänden (C) nur durch die Prüfungen abgedeckt sind, wenn diese speziellen Einbausituationen auch getestet wurden.

Fugen zwischen Decken und Wänden (D) sind hingegen durch die Prüfung von Abdichtungen für Bodenfugen (A) abgedeckt.

Abkürzung	Beschreibung
A	Lineare Fuge in horizontalem Testaufbau (Boden und Decke)
В	Vertikale lineare Fuge in vertikalem Testaufbau (Wand)
С	Horizontale lineare Fuge in vertikalem Testaufbau (Wand)
D	Horizontale Wandanschlussfuge zu Decke, Boden oder Dach

Ausrichtung der Fugen in Wänden, Decken und Böden

Geprüfte Orientierung	Damit abgedeckte Anwendungen	Ausrichtung nach EN 13501-2
A	A, D	H Horizontale Tragkonstruktion
В	В	V Vertikale Tragkonstruktion – vertikale Fugen
С	С	T Vertikale Tragkonstruktion – horizontale Fugen


5 LEICHTE UND MASSIVE WÄNDE

Jede Art von strukturellem Gebäudeelement (Wand oder Decke) führt zu einer anderen Feuerwiderstandsklassifikation und muss deshalb separat getestet werden. Zur Vereinfachung definiert die EN 1363-1 zwei grundlegend verschiedene Typen von Wänden. Mit der Prüfung einer Art wird eine grössere Bandbreite von Baumaterialien abgedeckt. Dank dieser Regelung können Testressourcen gespart werden, ohne Kompromisse in der Sicherheit eingehen zu müssen.

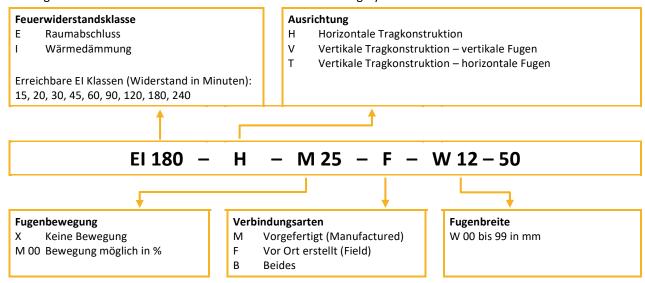
- Leichte Trennwände in Stahlständerbauweise mit Verkleidungen aus Gipskartonplatten
- Massive Wände mit hoher oder geringer Rohdichte und Mörtel

Prüfungen, die mit einem bestimmten Wandmaterial in Leichtbauweise durchgeführt werden, decken auch alle Wandmaterialien in Leichtbauweise anderer Hersteller mit derselben Zusammensetzung und der gleichen oder höheren Dicke ab.

Prüfungen von massiven Wandkonstruktionen decken alle massiven Wände mit der getesteten oder höheren Dicke ab, wie auch der getesteten oder höheren Materialdichte (z. B. Beton oder Stahlbeton anstatt Porenbeton).

Leichte (links) und massive (rechts) Wände mit Durchführungsöffnung und Fugendichtung

VerarbeitungsrichtlinieSika Lösungen für baulichen Brandschutz
02.2025



6 EN 13501-2

6.1 KLASSIFIZIERUNG VON LINIENFÖRMIGEN FUGENABDICHTUNGEN

Die EN 13501-2 ist die europaweit gültige Klassifizierungsnorm für den Feuerwiderstand von vielen Bauprodukten und tragenden sowie nicht tragenden Bauteilen mit Ausnahme von Lüftungsanlagen. Sie umfasst dabei sowohl linienförmige Fugenabdichtungen wie auch Durchführungsabschottungen. Die Klassifizierung von Fugenabdichtungen beruht auf fünf variablen Parametern – das Wissen um die Bedeutung ist jedoch unstet.

Die folgende Grafik bietet eine Übersicht über das Klassifizierungssystem mit all seinen enthaltenen Parametern.

Achtung! Es genügt nicht, dass der elastische Fugendichtstoff die zulässige Gesamtverformung nach ISO 11600 oder EN 15651 aufweisen kann. Es sind spezifische Brandprüfungen mit eingeleiteter Bewegung der Fuge dafür notwendig (z. B. nach EN 1366-4).

Dafür wird die Fuge vor der Feuerwiderstandsprüfung mechanisch auf die zu erzielende Verformung (z. B. 25% Dehnung) gebracht. In der Klassifizierung des Produktes nach EN 13501-2 ist ersichtlich, bis zu welcher Verformung der Fugendichtstoff getestet wurde:

EI 120 – V – X – F – W 0-30 Klassifizierung ohne Bewegung (X)

EI 120 – V – M 25 – F – W 0-30 Klassifizierung mit 25% aufgezwungener Verformung (M 25)

Nach EAD 350141-00-1106 (früher ETAG 026) können Fugendichtstoffe, die ohne Verformung geprüft wurden, eine maximale Bewegung von ±7.5% aufnehmen. Solche Fugen und Dichtstoffe werden als Nichtbewegungsfugen bezeichnet.

Innenanwendungen bei nicht tragenden Wänden oder Böden weisen typischerweise nicht mehr als ±7.5% Bewegung auf.

7 PRODUKTE FÜR LINEARE FUGENABDICHTUNG

7 PRODUKTE FOR EINLARE FOOLINADDICTIONS				
Beschreibung	Anwendung	Vorteile		
Sikacryl®-620 Fire 1-komponentiger, wasserbasierter, intumeszierender, überstreichbarer Fugendichtstoff. Chemische Basis: 1-komponentige Acryl-Dispersion	 Bei brandschutzqualifizierten Bewegungs- und Anschlussfugen auf saugenden und nicht saugenden Untergründen geeignet Fugenfüllung aus PE-Rundschnur, Fugenabschluss mit Sikacryl®-620 Fire 	 VKF Anerkennung Nr. 26734 und Nr. 31802 ETA-20/1115 Zulassung Bis zu 5 Stunden Feuerwiderstand nach EN 1366-4 Bis zu 2 Stunden Feuerwiderstand nach EN 1366-3 Gute Verarbeitbarkeit Gute Haftung auf vielen Untergründen Überstreichbar 		
Sikasil®-670 Fire 1-komponentiger, brandschutz- qualifizierter, feuchtigkeitshärtender, niedermoduliger Fugendichtstoff. Chemische Basis: 1-komponentiges feuchte- und neutralhärtendes Silikon	 Bei brandschutzqualifizierten Bewegungs- und Anschlussfugen auf saugenden und nicht saugenden Untergründen geeignet Fugenfüllung aus PE-Rund-schnur, Fugenabschluss mit Sikasil®-670 Fire 	 VKF Anerkennung Nr. 26735 ETA-20/1114 Zulassung Bis zu 4 Stunden Feuerwiderstand nach EN 1366-4 Sehr gute Witterungsbeständigkeit Zulässige Gesamtverformung ±25 % Sehr gute Verarbeitbarkeit und Glätteigenschaften Gute Haftung auf vielen Untergründen Neutrale Vernetzung (auch geeignet für Metall und Beton) 		
Sika Boom®-400 Fire Zulassung in der Schweiz: Anwendung mit Dispenser (Gun) 1-komponentiger, expandierender Polyurethan-Schaum. Chemische Basis: 1-komponentiges, feuchtigkeits- härtendes Polyurethan	 Zum Abdichten von Fugen an Wänden, Türen oder Fenstern 	 VKF Anerkennung Nr. 26793 Bis zu 4 Stunden Feuerwiderstand nach EN 1366-4 1-komponentig Gebrauchstemperatur von -40 °C bis +90 °C Kombi-Dose 		
Sika Boom®-400 Fire Zulassung in der Schweiz: Anwendung mit Adapter (Nozzle) 1-komponentiger, expandierender Polyurethan-Schaum. Chemische Basis: 1-komponentiges, feuchtigkeits- härtendes Polyurethan	 Zum Abdichten von Fugen an Wänden, Türen oder Fenstern 	 VKF Anerkennung Nr. 26796 Bis zu 4 Stunden Feuerwiderstand nach EN 1366-4 1-komponentig Gebrauchstemperatur von -40 °C bis +90 °C Kombi-Dose 		
Sika® Backer Rod Fire Rundes, komprimierbares Hinterfüll- profil auf Mineralwollbasis, eingefasst in ein Glasfasernetz.	 Hinterfüllprofil für brandwider- standsfähige Fugenabdichtungen in horizontalen und vertikalen Gebäudestrukturanwendungen Für das anschliessende Verfugen kann jeder Sika® Dichtstoff verwendet werden 	 VKF Anerkennung Nr. 32859 ETA-23/0088 Zulassung Leicht zu verarbeiten Je nach Konfiguration bis zu 4 Stunden Brandwiderstand Passt sich der Fugenbreite und den Unregelmässigkeiten an Hilft bei der Einhaltung der Fugendimension 		

VerarbeitungsrichtlinieSika Lösungen für baulichen Brandschutz
02.2025

German/Switzerland

7.1 SIKACRYL®-620 FIRE

7.1.1 VKF ANERKENNUNG NR. 26734 UND NR. 31802

Fugenfüllung aus PE-Rundschnur, Fugenabschluss mit Sikacryl®-620 Fire.

- Wand ≥ 150 mm, MBW / MBW mit geringer RD*
- Decke ≥ 150 mm, MBW / MBW mit geringer RD**
- Max. zulässige Bewegung gemäss EAD: 7.5 %
- * Massivbauwand aus Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 760 kg/m³.
- ** Massivdecke aus Beton oder Porenbeton mit einer Dichte ≥ 670 kg/m³.

Anwendung als Fugenabdichtung bei Anschlüssen an angrenzende Bauteile gemäss VKF-BSR 15-15.

Geprüft nach EN1363-1, EN 1366-4 und klassiert nach EN 13501-2.

7.1.1.1 Feuerwiderstand vertikaler Fugen in Massivwänden

Konfigurationen	Materialdicke	Fugenbreite	Min. Fugentiefe	Feuerwiderstand
V1 V2	Min 150 mm	0 – 10 mm	5 mm	EI 90
V1 – V3	Min. 150 mm	0 – 50 mm	25 mm	EI 30

V1 Doppelfuge vertikal

V2 Einzelfuge, feuer**ab**gewandte Seite

V3 Einzelfuge, feuerzugewandte Seite

7.1.1.2 Feuerwiderstand horizontaler Fugen in Massivdecken

Konfigurationen	Materialdicke	Fugenbreite	Min. Fugentiefe	Feuerwiderstand
	NA: 450	0 – 10 mm	5 mm	EI 90
H1 – H3	Min. 150 mm	0 – 50 mm	25 mm	EI 30

H1 Doppelfuge Boden

H2 Einzelfuge Boden, feuer**ab**gewandte Seite

H3 Einzelfuge Boden, feuer**zu**gewandte Seite

7.1.2 ETA-20/1115 ZULASSUNG

7.1.2.1 Feuerwiderstand vertikaler Fugen in Massivwänden

Feuerwiderstand vertikaler Fugen in Massivwänden* (Wandstärke ≥ 150 mm), abgedichtet mit Sikacryl®-620 Fire. Geprüft nach EN 1366-4 und klassifiziert nach EN 13501-2/EAD 350141-00-1106. Zulassung ETA-20/1115.

Untergründe	Bewegung	Konfiguration	Fugenbreite	Fugentiefe	Feuerwiderstand
Beton* / Beton	7.5 %	V1	12 – 50 mm	0.5 x Breite	El 240
Data w * / Ctabl	7.5 %	V1	12 – 49 mm	0.5 x Breite	El 90, E 240
Beton* / Stahl	7.5 %	V1	50 mm	0.5 x Breite	El 120, E 240
	7.5 %	V1	12 mm	0.5 x Breite	El 60, E 120
Beton* / Weichholz	7.5 %	V1	13 – 49 mm	0.5 x Breite	El 120
	7.5 %	V1	50 mm	0.5 x Breite	El 180
Data w * / Hawthala	7.5 %	V1	12 – 49 mm	0.5 x Breite	El 120
Beton* / Hartholz	7.5 %	V1	50 mm	0.5 x Breite	El 180

^{*} Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 650 kg/m³.

^{***} Hartholz mit einer Dichte ≥ 680 kg/m³.

V1 Doppelfuge

7.1.2.2 Feuerwiderstand in Massivdecken sowie Mauerkronen

Feuerwiderstand horizontaler Fugen in Massivdecken sowie Mauerkronen* (Stärke ≥ 150 mm), abgedichtet mit Sikacryl®-620 Fire.

Geprüft nach EN 1366-4 und klassifiziert nach EN 13501-2/EAD 350141-00-1106. Zulassung ETA-20/1115.

Untergründe	Bewegung	Konfiguration	Fugenbreite	Fugentiefe	Feuerwiderstand
	7.5 %	H2	12 mm	0.5 x Breite	El 180, E 240
Beton* / Beton	7.5 %	H2	13 – 49 mm	0.5 x Breite	El 120, E 240
	7.5 %	H2	50 mm	0.5 x Breite	El 180, E 240
Doton* / Ctobl	7.5 %	H2	12 mm	0.5 x Breite	El 60, E 240
Beton* / Stahl	7.5 %	H2	13 – 50 mm	0.5 x Breite	El 30, E 240

^{*} Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 650 kg/m³.

H2 Einzelfuge, feuer**ab**gewandte Seite

^{**} Weichholz mit einer Dichte \geq 410 kg/m³.

7.2 SIKASIL®-670 FIRE

7.2.1 VKF ANERKENNUNG NR. 26735

Fugenfüllung aus PE-Rundschnur, Fugenabschluss mit Sikasil®-670 Fire.

- Wand ≥ 150 mm, MBW / MBW mit geringer RD*
- Decke ≥ 150 mm, MBW / MBW mit geringer RD**
- Max. zulässige Bewegung gemäss EAD: 7.5 %
- * Massivbauwand aus Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 760 kg/m³.
- ** Massivdecke aus Beton oder Porenbeton mit einer Dichte ≥ 670 kg/m³.

Anwendung als Fugenabdichtung bei Anschlüssen an angrenzende Bauteile gemäss VKF-BSR 15-15.

Geprüft nach EN1363-1, EN 1366-4 und klassiert nach EN 13501-2.

7.2.1.1 Feuerwiderstand vertikaler Fugen in Massivwänden

Konfigurationen	Materialdicke	Fugenbreite	Min. Fugentiefe	Feuerwiderstand
		0 – 10 mm	5 mm	EI 90
V1 – V3	Min. 150 mm	0 – 30 mm	15 mm	EI 90
		0 – 50 mm	25 mm	EI 90

V1 Doppelfuge vertikal

V2 Einzelfuge, feuer**ab**gewandte Seite

V3 Einzelfuge, feuerzugewandte Seite

7.2.1.2 Feuerwiderstand horizontaler Fugen in Massivdecken

Konfigurationen	Materialdicke	Fugenbreite	Min. Fugentiefe	Feuerwiderstand
		0 – 10 mm	5 mm	EI 90
H1 – H3	Min. 150 mm	0 – 30 mm	15 mm	EI 90
		0 – 50 mm	25 mm	EI 90

H1 Doppelfuge

H2 Einzelfuge, feuer**ab**gewandte Seite

H3 Einzelfuge, feuerzugewandte Seite

7.2.2 ETA-20/1114 ZULASSUNG

7.2.2.1 Feuerwiderstand vertikaler Fugen in Massivwänden

Feuerwiderstand vertikaler Fugen in Massivwänden* (Wandstärke ≥ 150 mm), abgedichtet mit Sikasil®-670 Fire. Geprüft nach EN 1366-4 und klassifiziert nach EN 13501-2/EAD 350141-00-1106. Zulassung ETA-20/1114.

Untergründe	Bewegung	Konfiguration	Fugenbreite	Fugentiefe	Feuerwiderstand
	25 %	V1	12 – 50 mm	0.5 x Breite	El 240
	25 %	V2	10 – 30 mm	15 mm	El 45, E 180
	25 %	V2	12 – 50 mm	0.5 x Breite	El 30, E 240
	25 %	V3	10 – 30 mm	15 mm	El 45, E 60
Beton* / Beton	25 %	V3	30 – 50 mm	0.5 x Breite	El 45, E 60
	7.5 %	V1	12 – 50 mm	0.5 x Breite	El 240
	7.5 %	V2	12 – 50 mm	0.5 x Breite	El 60, E 240
	7.5 %	V3	10 – 30 mm	15 mm	El 60, E 240
	7.5 %	V3	30 – 50 mm	0.5 x Breite	El 45, E 180
	7.5 %	V1	12 – 30 mm	0.5 x Breite	El 60, E 240
Beton* / Stahl	7.5 %	V1	30 – 50 mm	0.5 x Breite	El 90, E 240
	7.5 %	V2	12 – 50 mm	0.5 x Breite	El 15, E 240
Data :: * / \\/ : :	7.5 %	V1	12 – 50 mm	0.5 x Breite	El 120
Beton* / Weichholz	7.5 %	V2	12 – 50 mm	0.5 x Breite	El 90
Poton* / Harthola	7.5 %	V1	12 – 30 mm	0.5 x Breite	El 180
Beton* / Hartholz	7.5 %	V1	30 – 50 mm	0.5 x Breite	El 240

^{*} Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 650 kg/m³.

^{***} Hartholz mit einer Dichte ≥ 680 kg/m³.

V1 Doppelfuge

V2 Einzelfuge, feuer**ab**gewandte Seite

V3 Einzelfuge, feuerzugewandte Seite

^{**} Weichholz mit einer Dichte ≥ 410 kg/m³.

7.2.2.2 Feuerwiderstand horizontaler Fugen in Massivwänden

Feuerwiderstand horizontaler Fugen in Massivwänden* (Wandstärke ≥ 150 mm), abgedichtet mit Sikasil®-670 Fire. Geprüft nach EN 1366-4 und klassifiziert nach EN 13501-2/EAD 350141-00-1106. Zulassung ETA-20/1114.

Untergründe	Bewegung	Konfiguration	Fugenbreite	Fugentiefe	Feuerwiderstand
	25 %	T1	12 – 50 mm	0.5 x Breite	El 180, E 240
	25 %	T2	12 – 50 mm	0.5 x Breite	El 60, E 120
	25 %	T3	10 – 30 mm	15 mm	El 45, E 60
Data at / Data a	25 %	T3	30 – 50 mm	0.5 x Breite	El 45, E 60
Beton* / Beton	7.5 %	T1	12 – 50 mm	0.5 x Breite	El 240
	7.5 %	T2	12 – 50 mm	0.5 x Breite	El 60, E 240
	7.5 %	T3	10 – 30 mm	15 mm	El 60, E 180
	7.5 %	T3	30 – 50 mm	0.5 x Breite	El 60, E 90

^{*} Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 650 kg/m³.

T2 Einzelfuge, feuer**ab**gewandte Seite

T3 Einzelfuge, feuer**zu**gewandte Seite

7.2.2.3 Feuerwiderstand in Massivdecken sowie Mauerkronen

Feuerwiderstand von Fugen in Massivdecken sowie Mauerkronen* (Stärke ≥ 150 mm), abgedichtet mit Sikasil®-670 Fire.

Geprüft nach EN 1366-4 und klassifiziert nach EN 13501-2/EAD 350141-00-1106. Zulassung ETA-20/1114.

Untergründe	Bewegung	Konfiguration	Fugenbreite	Fugentiefe	Feuerwiderstand
	25 %	H1	12 – 50 mm	0.8 x Breite	El 180, E 240
	25 %	H2	12 – 50 mm	0.8 x Breite	El 60, E 240
	25 %	H3	12 – 50 mm	0.8 x Breite	El 60, E 90
Beton* / Beton	7.5 %	H1	12 – 50 mm	0.8 x Breite	El 240
	7.5 %	H2	12 – 30 mm	0.8 x Breite	El 120, E 240
	7.5 %	H2	12 – 50 mm	0.8 x Breite	El 60, E 240
	7.5 %	H3	12 – 50 mm	0.8 x Breite	El 60
	7.5 %	H1	12 – 50 mm	0.8 x Breite	El 60, E 240
Beton* / Stahl	7.5 %	H2	12 – 50 mm	0.8 x Breite	El 60, E 90
	7.5 %	H3	12 – 50 mm	0.8 x Breite	El 60, E 90

^{*} Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 650 kg/m³.

H2 Einzelfuge, feuer**ab**gewandte Seite

H3 Einzelfuge, feuer**zu**gewandte Seite

7.3 SIKA BOOM®-400 FIRE

7.3.1 VKF ANERKENNUNG NR. 26793 UND NR. 26796

Fugenfüllung aus PU-Schaum, Verarbeitung Dispenser RD = 20 kg/m³; Adapter RD = 19 kg/m³.

- Wand ≥ 200 mm, MBW / MBW mit geringer RD*
- Decke ≥ 200 mm, MBW / MBW mit geringer RD**
- * Massivbauwand aus Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 760 kg/m³.
- ** Massivdecke aus Beton oder Porenbeton mit einer Dichte ≥ 670 kg/m³.

Anwendung als Fugenabdichtung bei Anschlüssen an angrenzende Bauteile gemäss VKF-BSR 15-15.

Geprüft nach EN1363-1, EN 1366-4 und klassiert nach EN 13501-2.

7.3.1.1 Feuerwiderstand vertikaler Fugen in Massivwänden

Verarbeitung	Konfigurationen	Materialdicke	Fugenbreite	Min. Fugentiefe	Feuerwiderstand
Dispenser (Gun)	V	Min. 200 mm	0 – 35 mm	120 mm	EI 90
Adapter (Norrie)	W	Min. 200 mm	0 – 35 mm	100 mm	EI 60
Adapter (Nozzle)	V	IVIIII. 200 IIIIII	0 – 45 mm	160 mm	EI 90

V Einzelfuge, feuerabgewandte Seite

7.3.1.2 Feuerwiderstand horizontaler Fugen in Massivdecken

Verarbeitung	Konfigurationen	Materialdicke	Fugenbreite	Min. Fugentiefe	Feuerwiderstand
Dispenser (Gun)	Н	Min. 200 mm	0 – 20 mm	120 mm	EI 90
			0 – 30 mm	180 mm	El 90
A do oto u /Non-la)	- 11	M:n 200 mm	0 – 35 mm	100 mm	EI 60
Adapter (Nozzle)	Н	Min. 200 mm	0 – 45 mm	160 mm	EI 60

H Einzelfuge, horizontal, feuer**ab**gewandte Seite

7.4 SIKA® BACKER ROD FIRE

7.4.1 WAHL DES SIKA® BACKER ROD FIRE DURCHMESSERS

Die Sika® Backer Rod Fire ist eine nicht brennbare Hinterfüllschnur auf Mineralwollbasis und in sieben verschiedenen Durchmessern erhältlich (siehe Y-Achse des Diagrammes). Die Zahl am rechten Ende der gelben Balken ist die maximale Fugenbreite, für welche die jeweilige Hinterfüllschnur verwendet werden darf, um eine min. Kompressionsrate von 15 % einzuhalten.

Die Zahl am linken Ende der gelben Balken gibt die kleinste Fugenbreite an, bis zu der die Hinterfüllschnur zusammengepresst werden kann. So ist zum Beispiel für eine Sika® Backer Rod Fire Hinterfüllschnur mit einem Durchmesser von 50 mm die maximal zulässige Fugenbreite 42.5 mm und die minimale Fugenbreite 32 mm.

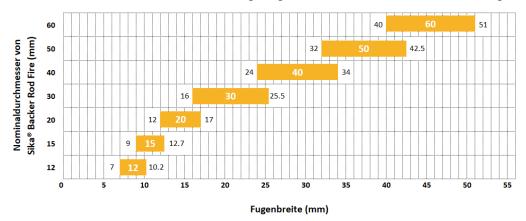


Diagramm: Verwendung von Sika® Backer Rod Fire abhängig von der Fugenbreite

7.4.2 VKF ANERKENNUNG NR. 32859

Fugenfüllung aus Rundschnur Sika® Backer Rod Fire kombiniert mit jedem Sika® Dichtstoff.

Wand: Beidseitig
 Decke: Ober- oder beidseitig
 150 mm, MBW / MBW mit geringer RD*
 150 mm, MBW / MBW mit geringer RD**

Max. zulässige Bewegung gemäss EAD: 7.5 %Min. Kompressionsrate: 15 %

* Massivbauwand aus Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 760 kg/m³.

** Massivdecke aus Beton oder Porenbeton mit einer Dichte ≥ 670 kg/m³.

Feuerwiderstand vertikaler Fugen in Massivwänden (Wandstärke ≥ 150 mm), abgedichtet mit Sika® Backer Rod Fire in Kombination mit jedem Sika Dichtstoff.

Einlagig, stumpfes stossen, kürzestes Sika® Backer Rod Fire Stück ≥ 600 mm.

Anwendung als Fugenabdichtung bei Anschlüssen an angrenzende Bauteile gemäss VKF-BSR 15-15.

Geprüft nach EN 1366-4:2021 und klassifiziert nach EN 13501-2/EAD 350141-00-1106.

7.4.2.1 Vertikale Fugen in Massivwänden

Konfiguration	Fugenbreite	Fugentiefe	Feuerwiderstand
V1	7 – 51 mm	0.5 x Breite	El 240
V2	7 – 51 mm	0.5 x Breite	El 120, E 240
V3	7 – 51 mm	0.5 x Breite	El 20, E 240
V4	7 – 51 mm	0.5 x Breite	El 120, E 240

abgewandte Seite

V3 Einzelfuge, feuerzugewandte Seite und jede Position innerhalb der Wand

V4 Eine Seite:
Sika® Backer Rod Fire
Gegenüberliegende
Seite:
Geschlossenzellige PERundschnur, z. B. Sika®
Rundschnur PE

7.4.2.2 Feuerwiderstand in Massivdecken

Konfigurationen	Materialdicke	Fugenbreite	Min. Fugentiefe	Feuerwiderstand
H1 – H2	Min. 150 mm	7 – 51 mm	Siehe PDS Sika® Dichtstoff	El 90

H1 Doppelfuge

H2 Einzelfuge, feuer**ab**gewandte Seite

7.4.3 ETA-23/0088 ZULASSUNG

7.4.3.1 Vertikale Fugen in Massivwänden

Feuerwiderstand vertikaler Fugen in Massivwänden* (Wandstärke ≥ 150 mm), abgedichtet mit Sika® Backer Rod Fire in Kombination mit jedem Sika Dichtstoff, maximale Bewegung ≤ 7.5 %.

Einlagig, stumpfes stossen, kürzestes Sika® Backer Rod Fire Stück ≥ 600 mm.

Geprüft nach EN 1366-4 und klassifiziert nach EN 13501-2/EAD 350141-00-1106. Zulassung ETA-23/0088.

Konfiguration	Fugenbreite	Fugentiefe	Feuerwiderstand
V1	7 – 51 mm	0.5 x Breite	El 240
V2	7 – 51 mm	0.5 x Breite	El 120, E 240
V3	7 – 51 mm	0.5 x Breite	El 20, E 240
V4	7 – 51 mm	0.5 x Breite	El 120, E 240

^{*} Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 760 kg/m³.

V2 Finzelfuge, feuer-

V2 Einzelfuge, feuerabgewandte Seite

V3 Einzelfuge, Feuerzugewandte Seite und jede Position innerhalb der Wand

V4 Eine Seite:
Sika® Backer Rod Fire
Gegenüberliegende
Seite:
Geschlossenzellige PERundschnur, z. B. Sika®
Rundschnur PE

7.4.3.2 Horizontale Fugen in Massivwänden

Feuerwiderstand horizontaler Fugen in Massivwänden* (Wandstärke ≥ 150 mm), abgedichtet mit Sika® Backer Rod Fire in Kombination mit jedem Sika Dichtstoff, maximale Bewegung ≤ 7.5%.

Einlagig, stumpfes stossen, kürzestes Sika® Backer Rod Fire Stück ≥ 600 mm.

Geprüft nach EN 1366-4 und klassifiziert nach EN 13501-2/EAD 350141-00-1106. Zulassung ETA-23/0088.

Konfiguration	Fugenbreite	Fugentiefe	Feuerwiderstand
T1	7 – 51 mm	0.5 x Breite	El 180
T2	7 – 51 mm	0.5 x Breite	El 90, E 240
T3	7 – 51 mm	0.5 x Breite	El 20, E 120
T4	7 – 51 mm	0.5 x Breite	El 90, E 180
T5	7 – 51 mm	0.5 x Breite	El 60, E 180

^{*} Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 760 kg/m³.

T1 Doppelfuge

T2 Einzelfuge, feuer**ab**gewandte Seite

T3 Einzelfuge, feuerzugewandte Seite und jede Position innerhalb der Wand

T4 Eine Seite:
Sika® Backer Rod Fire
Gegenüberliegende
Seite:
Geschlossenzellige PERundschnur, z. B. Sika®
Rundschnur PE

T5 Doppelte Lage Sika® Backer Rod Fire Einzelfuge und jede Position innerhalb der Wand

Verarbeitungsrichtlinie Sika Lösungen für baulichen Brandschutz 02.2025

7.4.3.3 Fugen in Massivdecken

Feuerwiderstand von Fugen in Massivdecken* (Stärke ≥ 150 mm), abgedichtet mit Sika® Backer Rod Fire in Kombination mit jedem Sika Dichtstoff, maximale Bewegung ≤ 7.5%.

Einlagig, stumpfes stossen, kürzestes Sika® Backer Rod Fire Stück ≥ 600 mm.

Geprüft nach EN 1366-4 und klassifiziert nach EN 13501-2/EAD 350141-00-1106. Zulassung ETA-23/0088.

Konfiguration	Fugenbreite	Fugentiefe	Feuerwiderstand
H1	7 – 51 mm	0.5 x Breite	El 180
H2	7 – 51 mm	0.5 x Breite	El 90, E 240
H3	7 – 51 mm	0.5 x Breite	El 20, E 120
H4	7 – 51 mm	0.5 x Breite	El 90, E 180
H5	7 – 51 mm	0.5 x Breite	El 60, E 180

^{*} Mauerziegel, Beton oder Porenbeton mit einer Dichte ≥ 760 kg/m³.


H1 Doppelfuge

H2 Einzelfuge, feuerabgewandte Seite

H3 Einzelfuge, feuerzugewandte Seite und jede Position innerhalb der Wand

H4 Eine Seite:
Sika® Backer Rod Fire
Gegenüberliegende
Seite:
Geschlossenzellige PERundschnur, z. B. Sika®
Rundschnur PE

H5 Doppelte Lage Sika® Backer Rod Fire Einzelfuge und jede Position innerhalb der Wand

8 SIKA BRANDSCHUTZETIKETTE

Die Brandschutzetiketten für die feuerwiderstandsfähigen, linearen Fugenabdichtungen stehen auf www.sika.ch (oder via unten aufgeführten QR-Code) zur Verfügung (zum Ausdrucken Avery Zweckform Etiketten L7915 nutzen).

FEUERWIDERSTANDSFÄHIGE, LINEARE FUGENABDICHTUNG Name, Adresse, Unterschrift der Anerkennung: Zulassung: ausführenden Firma: Nr. 26734 Sikacryl®-620 Fire 20/1115, 30.12.2020 Nr. 31802 Sikasil®-670 Fire Nr. 26735 20/1114, 29.12.2020 Sika Boom®-400 Fire Nr. 26793 (Gun) Nr. 26796 (Nozzle) Einbaudatum: Sika® Backer Rod Fire Nr. 32859 23/0088, 31.03.2023 In Verbindung mit folgendem Sika® Dichtstoff: Feuerwiderstandsklasse: DIES IST EINE FEUERWIDERSTANDSFÄHIGE FUGENABDICHTUNG. Abdichtung Nr.: IM FALL VON BESCHÄDIGUNG ODER ENTFERNUNG IST SIE **UMGEHEND WIEDERHERZUSTELLEN!** PROFESSIONAL FIRE PROTECTION Sika Schweiz AG www.sika.ch BUILDING TRUST

VerarbeitungsrichtlinieSika Lösungen für baulichen Brandschutz
02.2025

9 RECHTLICHE HINWEISE

Die hier gemachten Angaben und jede andere Beratung beruhen auf unseren aktuellen Kenntnissen und Erfahrungen bei korrekter Lagerung, Handhabung und Verwendung unserer Produkte unter normalen Umständen und entsprechend unseren Empfehlungen. Die Angaben beziehen sich nur auf die ausdrücklich erwähnten Anwendungen und Produkte und beruhen auf Labortests, die die Praxiserprobung nicht ersetzen. Für den Fall, dass sich die Anwendungsparameter ändern, z. B. bei Abweichungen der Untergründe etc., oder bei anderweitiger Anwendung, wenden Sie sich bitte vorher an unsere Technische Beratung. Die hier angegebenen Informationen befreien den Produktanwender nicht davon, die Eignung des Produkts für die vorgesehene Anwendung und den vorgesehenen Zweck zu überprüfen. Für alle Bestellungen gelten unsere aktuellen Allgemeinen Verkaufs- und Lieferbedingungen. Produktanwender müssen sich stets auf die neueste Ausgabe des lokalen Produktedatenblatts des betreffenden Produktes beziehen, welches auf Anfrage zur Verfügung gestellt wird.

WEITERE INFORMATIONEN ZU SIKA LÖSUNGEN FÜR BAULICHEN BRANDSCHUTZ

Sika Schweiz AG Tüffenwies 16 8048 Zürich Schweiz www.sika.ch

JMs

Tel.: +41 58 436 40 40

